Long-term variability of storm surge frequency in the Venice Lagoon: an update thanks to 18th century sea level observations

نویسنده

  • F. Raicich
چکیده

Sea level observations made in the Venice Lagoon between 1751 and 1792 have been recovered, consisting of two time series of daily data on high and low waters in Venice and Chioggia. From comparisons with modern observations, the quality of the 18th century data appears to be good enough to allow a useful analysis. A composite time series of daily mean sea level is obtained by merging the 18th century data and 1872–2004 observations in Venice Punta della Salute. The absence of reliable information on vertical references prevents the connection of the two 18th century time series with each other and with modern observations. However, daily sea level anomalies relative to the mean sea level enable us to recognize storm surge events that appear to occur more frequently in the second half of the 18th century than in the late 19th and 20th centuries, particularly during the 1751–1769 period. The record-breaking storm surge of 4 November 1966 turns out to be a remarkable event even in comparison to the events extracted from the 18th century time series. Further work is required to fill the gap between the old and modern observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sea level extremes on the western Basque coast during the 21st century

Rising global sea level increases the vulnerability of coastal regions to storm surge flooding. The impact of extreme high waters resulting from the combination of tidal oscillations and changes in mean sea level and in storm surges during the 21st century has been explored in the Bizkaian coast (northern Spain). Mean sea level variations due to temperature changes were estimated from an ensemb...

متن کامل

Flood Risk Mapping Using LiDAR for Annapolis Royal, Nova Scotia, Canada

A significant portion of the Canadian Maritime coastline has been surveyed with airborne Light Detection and Ranging (LiDAR). The purpose of these surveys has been to map the risk of flooding from storm surges and projected long-term sea-level rise from climate change and to include projects in all three Maritime Provinces: Prince Edward Island, New Brunswick, and Nova Scotia. LiDAR provides th...

متن کامل

Extreme Oceanic Events in the Lagoon of Venice Simulated by an Atmospheric/oceanic Model

A very high resolution oceanic model forced by a regional atmospheric model is used to investigate, under realistic conditions, storm surges observed in the Lagoon of Venice and scenarios of sea level variations related to local manifestations of larger scale climatic changes.

متن کامل

Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar

[1] Coastal regions are increasingly affected by larger storms and rising sea level predicted by global warming models, aggravating the situation in the city of Venice where tidal-induced seasonal flooding coupled with natural and anthropogenic subsidence have been perennial problems. In light of accelerated efforts to protect Venice from the rise in sea level we assess land subsidence in the V...

متن کامل

Directional Storm Surge in Enclosed Seas: The Red Sea, the Adriatic, and Venice

Storm surge is dependent on wind direction, with maximum surge heights occurring when strong winds blow onshore. It is less obvious what happens when a port city is situated at the end of a long narrow gulf, like Venice at the northwestern end of the Adriatic Sea. Does the narrow marine approach to the port city limit the dangerous wind direction to a span of only a few degrees? This modeling s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015